
/

NASA-CR-205687

/

Final Report - Proposal for /3-test of GIFCORCODE

NASA Ames Project Number NAG 21025

by William S. Levine, Project Director

July 31, 1997

Introduction: This year's effort produced very significant progress in the development

of the software package heretofore known as GIFCORCODE. One important change has

been in the name. The package is now named CONDUIT for CONtrol Designer's Unified

InTerface. There have also been some more significant changes in the way CONDUIT

is used. These changes caused some modifications in the work accomplished. Both the

original goals for the year and the modifications will be described in the next section of

this report.

The major goal for this year was to bring CONDUIT to t3-test. This has been accom-

plished. The software package is in _-test at Bell Helicopters and has been since September

1996. This and the other achievements during the past year are described in the third sec-

tion of this report. Some discussion of the scaling issue is also included here. This is in

answer to a question that arose at one of the CONDUIT briefings.

The report concludes with a brief set of suggestions for further work. An appendix

describing the issues involved in dynamic linking is also included.

Original Goals: The primary goal for the year, as explained in the original proposal,

was to bring CONDUIT to 13-test. Eleven tasks that needed to be completed in order to

accomplish this goal were also planned for the year.

Task 1:

Task 2:

Task 3:

Task 4:

Task 5:

The original eleven tasks were as follows:

Implement a zero iterations feature.

Change the simulations, constraints, and criteria to be more than 90

Complete the User's Manual.

Fully implement the Help Menus

Combine the present three rotorcraft models into one model that can be used to

evaluate all the specifications.

/

Task 6:

Task 7:

Task 8:

Task 9:

Task 10:

Task 11:

Implement the frequency and time response plotting feature

Make it possible for the designer to view multiple design parameter/constraint win-

dows simultaneously.

Make it possible for the designer to view the ADS-33 display in the ways that he or

she finds most effective.

Make it possible to run two copies of MATLAB simultaneously.

Respond immediately to requests from the b-sites for help, bug notices, changes, and

additional features.

Prepare a one hour talk about CONDUIT and present it at the major rotorcraft

manufacturers.

One of the first tasks to be completed was Task 11, the preparation of a one hour talk

describing the software and its use. This talk was presented, as planned, at McDonnell-

Douglas on August 20. 1996 and at Bell/Textron on August 21, 1996. During the discus-

sions following these talks it was learned that neither company could use CONDUIT as

long as it was restricted to Sun Computers. The helicopter companies use SGI machines.

This led to the most significant of the changes in the planned tasks. The task of

porting CONDUIT to SGI computers was added to the list and made the highest priority.

Tasks 3 and 4 were also changed substantially in response to changes in the overall

design of CONDUIT. The original feasibility study showed that CONSOL-OPTCAD could

be very useful in the design of rotorcraft control systems. It also showed that the user

of CONSOL-OPTCAD had to be very knowledgeable about control design, programming

is several languages, and optimization. When Tasks 3 and 4 were proposed we thought

the use of pull-down menus would greatly alleviate the need for much of the programming

knowledge. As work progressed it became clear that CONDUIT could be made even easier

to use by including a library of specifications. The result was to deemphasize temporarily

the work on Tasks 3 and 4 and to increase substantially the planned scope of CONDUIT.

Results: The major goal for the year was achieved. CONDUIT is in ¢_-test at Bell/Textron

and has been since well before the conclusion of the year. As described earlier, a prerequi-

site for Bell's use of CONDUIT was that it be ported from Sun machines to SGI machines.

This involved solving a difficult problem. CONSOL-OPTCAD, the computing engine at,

the heart of CONDUIT, usesdynamic linking. It is difficult to ransfer dynamic linking

from onetype of computer to another. We wereableto accomplishthis task expeditiously.

Appendix A contains a brief account of the reasonsfor dynamic linking and what was

involved in the transfer.

A considerable amount of additional work was done in support of the further de-

velopment of CONDUIT. This includes bug fixes, improvements to subroutines within

CONDUIT, and the addition of capabilities to CONDUIT. All of this work is significant

and time consumingbut not worthwhile enumerating in this report.

A question was raisedat oneof the CONDUIT talks about scaling. The questionwas

whether nonlinear specificationscould be arbitrarily scaledwithin the min max framework

that is the foundation for CONDUIT. The answeris yes. This is shown by the two simple

MATLAB programs that follow.

% qu.m
% This is a little plotter of a quadratic
%WSL 2/7/97

al=l; a2=4;

bl=-lS; b2=-10;

c1=100; c2=20;

x=[0:.1:10];

minl=-bl/(2*al)

min2=-b2/(2*a2)

y=polyval([al bl cl],x);

z=polyval([a2,b2,c2],x);

plot(x,y,x,z)

title('Two quadratic functions')

xlabel('x-axis') ;ylabel('value of quadratics')

3

Two quadratic functions
350

300 'F

250

O3
0

200
13

t3"

"5
150

/

/
/

50

0 l 1 I I L I r

0 1 2 3 4 5 6 7 8 9
x-axis

i
l

10

Figure 1 - Illustrating the intersection of two quadratics.

The code generates Figure 1. Notice that Figure 1 shows the intersection of two

quadratic curves. The minimum of the maximums occurs at x=4. It is obvious that

changing the relative y-axis scaling of the two quadratics would move the intersection

anywhere on the x-axis although there might be a second intersection somewhere. In

contrast, the secnod piece of MATLAB code evaluates the minimum of a linear combination

of the two quadratics. As illustrated in Figure 2, this minimum can only occur in the narrow

range between the minimums of the individual functions.

% op.m

% This is a little example of linear combination of quadratic

% objectives for Mark Tischler

% WSL

% 2/6/97

% First criterion is al*x 2 + bl*x + cl

% Second criterion is a2*x 2 + b2*x = e2

% Minimizing value of x=-(bl+k*b2)/2*(al + k'a2)

clg

k=[0:.01:5];

w=-(bl*ones(size(k)) +k'b2)./(2* (al*ones(size (k))+k*a2));

plot(k,w)

title('Optimizing value of x versus scaling factor')

xlabel('scaling factor'); ylabel('optmal value of x');

Optimizing value of x versus scaling factor

x6
"5

>_5

o4

1 I J I I] _ I

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
scaling factor

L

5

Figure 2 - The optimizing value of x versus scale factor.

Conclusions: The CONDUIT project was advanced considerably during this past year.

The major objective, bringing it to fl-test, was accomplished on schedule. Most of the

preliminary objectives on the critical path to this major objective were changed somewhat

because of changes in some aspects of CONDUIT's operation. These changes resulted from

experience in using CONDUIT and from conversations with potential users. The current

version, as of mid-January 1997 is greatly enhanced from the version at the beginning of

the year. This was second most important objective for the year.

The current status of CONDUIT is well-documented in the paper

Conduit-A New Multidisciplinary Integration Environment

for Flight Control Development

by Mark B. Tischler, Jason D. Colbourne, Mark R. Morel, Daniel J. Biezad,

William S. Levine, and Veronica Moldoveanu

which will be presented at the AIAA Guidance, Navigation, and Control Conference_

August 11-13, 1997, New Orleans, Louisiana. The paper will also appear in the proceedings

of that meeting.

Appendix

Implementing Dynamic Linking

in

CONSOL-OPTCAD

Irving Hsu

Dynamic Linking

In a program that spansseveralsourcefiles,a function in onefile often refers to oneor more

symbols(e.g.,variablesand function names)from another file. When a program is compiled

into an executable binary, resolution of suchexternal referencesis performed during the

linking stage. In this stage the compiler determinesthe actual memory locations of these

symbols, and replaceseach referencewith the correspondingmemory location.

Normally linking is done statically; that is, all symbolic referenceshave beencompletely

resolvedby the time a binary is loaded into memory for execution. For different design

projects the problem moduleswould be different and, if different simulators are used,each

simulator would require a different interface with the solve module. Without dynamic

linking, the userwould needto producean executablebinary for eachunique combination

of designproject and simulator. This clearly is not a good solution.

With dynamic linking, a more elegantalternative is possible. When the solve module is

invoked, it is passedthe name of the problem module and the simulator to be used. The

solvemodule then calls upon the operating system'sdynamic linking facilities to load and

link in the appropriate problem module and simulator interface, and the end effect is the

sameas if all three modules had beenstatically linked.

Using Dynamic Linking

Most Unix systemsprovide dynamic linking servicesthrough the following calls:

#include <dlfcn.h>

void* dlopen(char*path,int mode)

void* dlsym(void*handle,char*symbol);

6

dlopen 0 provides access to the object in _, returning a descriptor that can be used

for later references to the object in calls to dlsym O. If path was not in the address space

prior to the call to dlopenO, then it will be placed in the address space. When an object

is brought into the address space, it may contain references to symbols whose addresses

are not known until the object is loaded. These references must be relocated before the

symbols can be accessed. The mode parameter governs when these relocations take place

and can have the following values:

• RTLD_NOW all relocations take place immediately when object is loaded

• RTLD_LAZY relocation of a function takes place when it is first referenced

If either of these values is OR'd with RTLD_GLOBAL, the symbols contained in the

object will be visible to other objects that are dlopen'd. The fact that the symbols from

one dynamically-loaded object can be made visible to another is critical: the problem

module contains references to functions defined by the simulator interface. Since both are

dynamically loaded, symbols defined in the simulator interface must be made visible to

the problem module for the references to be properly resolved.

IRIX 5.3 and SunOS 5.5 implementations of dynamic linking honor the

RTLD_GLOBAL flag; SunOS 4.1.* does not. Therefore, dynamic linking with dlopen(1)

and dlsym 0 will not work under SunOS 4.1.*

dlsym 0 is used to determine the address binding of symbol in the object identified by

handle.

With these two routines, implementing dynamic linking becomes straightforward. The

solve module passes each of the object modules supplied on the command line, as well as

the simulator interface selected, if any, to dlopen O. It also loads the problem module into

its address space with dlopen O. In addition, using the handle returned by dlopen O, it calls

upon dlsym 0 to locate the entry point to the problem module (the function spec_). Sym-

bolic resolutions, if any, are taken care of automatically by the dynamic linking facilities.

0nly shared objects may be dynamically linked in this manner. Thus, the convert module

must be modified to produce shared objects. For IRIX 5.3, the compiler command is:

7

cc-ansi-shared-w-o <object>.so <object>.c

and for SunOS5.5, the appropriate command is:

ec-G -o <objeet>.e

